Word Sense-Aware Machine Translation: Including Senses as Contextual Features for Improved Translation Models

نویسندگان

  • Steven Neale
  • Luís Gomes
  • Eneko Agirre
  • Oier Lopez de Lacalle
  • António Branco
چکیده

Although it is commonly assumed that word sense disambiguation (WSD) should help to improve lexical choice and improve the quality of machine translation systems, how to successfully integrate word senses into such systems remains an unanswered question. Some successful approaches have involved reformulating either WSD or the word senses it produces, but work on using traditional word senses to improve machine translation have met with limited success. In this paper, we build upon previous work that experimented on including word senses as contextual features in maxent-based translation models. Training on a large, open-domain corpus (Europarl), we demonstrate that this aproach yields significant improvements in machine translation from English to Portuguese.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expanding wordnets to new languages with multilingual sense disambiguation

Princeton WordNet is one of the most important resources for natural language processing, but is only available for English. While it has been translated using the expand approach to many other languages, this is an expensive manual process. Therefore it would be beneficial to have a high-quality automatic translation approach that would support NLP techniques, which rely on WordNet in new lang...

متن کامل

Improving Word Sense Disambiguation in Neural Machine Translation with Sense Embeddings

Word sense disambiguation is necessary in translation because different word senses often have different translations. Neural machine translation models learn different senses of words as part of an end-to-end translation task, and their capability to perform word sense disambiguation has so far not been quantified. We exploit the fact that neural translation models can score arbitrary translat...

متن کامل

Extending Bilingual WordNet via Hierarchical Word Translation Classification

We introduce a method for learning to assign word senses to translation pairs. In our approach, this sense assignment or disambiguation problem is transformed into one on how to navigate through a sense network like WordNet aimed at distinguishing the more adequate senses from others. The method involves automatically constructing classification models for branching nodes in the network, and au...

متن کامل

Context-Dependent Phrasal Translation Lexicons for Statistical Machine Translation

Most current statistical machine translation (SMT) systems make very little use of contextual information to select a translation candidate for a given input language phrase. However, despite evidence that rich context features are useful in stand-alone translation disambiguation tasks, recent studies reported that incorporating context-rich approaches from Word Sense Disambiguation (WSD) metho...

متن کامل

Sense-Aware Statistical Machine Translation using Adaptive Context-Dependent Clustering

Statistical machine translation (SMT) systems use local cues from n-gram translation and language models to select the translation of each source word. Such systems do not explicitly perform word sense disambiguation (WSD), although this would enable them to select translations depending on the hypothesized sense of each word. Previous attempts to constrain word translations based on the result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016